Standard Test Method for Base Number of Petroleum Products by Potentiometric Perchloric Acid Titration

1. Scope

1.1 This test method covers the determination of basic constituents in petroleum products by titration with perchloric acid in glacial acetic acid.

1.2 Procedures A and B use different titration solvent volumes and sample weights.

Note 1—A round robin on a series of new and used oils and additive concentrates has shown that the two procedures give statistically equivalent results.

1.3 Appendix X2 provides the use of an alternative solvent system which eliminates the use of chlorobenzene in this test method. The use of the alternative solvent gives statistically equivalent results; however, the precision is worse. Paragraph X2.5.5 provides guidance when comparing results using the two different solvents.

1.4 The constituents that may be considered to have basic characteristics include organic and inorganic bases, amino compounds, salts of weak acids (soaps), basic salts of polyacetic bases, and salts of heavy metals.

Note 2—This test method is applicable to both fresh oils and used oils as described in Sections 16, 17, and 19 and Appendix X1.

1.5 This test method can be used to determine base number >300 mg KOH/g. However, the precision statement in Section 19 has been obtained only on base number ≤300 mg KOH/g.

1.6 This test does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7, Section 10, and X2.2.

2. Referenced Documents

2.1 ASTM Standards:

- D 1193 Specification for Reagent Water

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

- **base number**—the quantity of perchloric acid expressed in terms of the equivalent number of milligrams of potassium hydroxide that are required to titrate 1 g of the sample dissolved in the specified solvent to a well-defined inflection point as specified in this test method.

4. Summary of Test Method

4.1 The sample is dissolved in an essentially anhydrous mixture of chlorobenzene and glacial acetic acid and titrated with a solution of perchloric acid in glacial acetic acid using potentiometric titrimer. A glass indicating electrode and a calomel reference electrode are used, the latter being connected with the sample solution by means of a salt bridge. The meter readings are plotted against the respective volumes of titrating solution, and the end point is taken at the inflection in the resulting curve.

4.2 Procedure A uses 120 mL of titration solvent. Procedure B uses 60 mL of titration solvent. In addition, the two procedures use different equations for the calculation of appropriate sample weights. Since many portions of the test method are identical for Procedures A and B, only the unique sections will be described separately for the two versions of the test method.
4. Occasionally certain used oils give no inflection in the forward titration mode, in which case a back titration modification with sodium acetate titrant is employed.

5. Significance and Use

5.1 New and used petroleum products can contain basic constituents that are present as additives. The relative amounts of these materials can be determined by titration with acids. The base number is a measure of the amount of basic substance in the oil, always under the conditions of the test. It is sometimes used as a measure of lubricant degradation in service; however, any condemning limits must be empirically established.

6. Apparatus

6.1 Potentiometric Titrimeters, either automatic recording or manual.

6.2 Glass Electrode, pH 0 to 11, general-purpose type.

6.3 Reference Electrode, sleeve-type saturated calomel electrode with a nonaqueous salt bridge as described in Section 10.

NOTE 3—Some reference electrodes with fritted or fiber diaphragms and some combined glass plus reference electrodes systems are commercially available, such as the single-rod glass plus silver/silver chloride electrode assembly. During the development of this test method, the use of electrodes of these types gave problems in some laboratories, but not in others. Accordingly, these electrodes are permitted in this test method, provided that the sodium perchlorate bridge is used; however, when stability or other problems arise with their use, the sleeve-type electrode should be used.

6.4 Stirrer, either mechanical or electrical, with variable speeds and with propeller or paddle of chemically inert material. When an electrical stirrer is used, it must be grounded so that disconnecting or connecting the power to the motor will not produce a permanent change in meter reading during the course of a titration. A magnetic stirrer with stirring bar can be used provided it meets these conditions.

6.5 Buret, 10 or 20-mL, graduated in 0.05-mL divisions and calibrated with an accuracy of ±0.02 mL, or an automatic buret of similar accuracy.

6.6 Titration Beaker, made of borosilicate glass or other suitable titration beaker, tall form recommended.

6.6.1 For Procedure A, use a beaker of 250 or 300 mL capacity. For Procedure B, use a beaker of about 150 mL capacity such that 60 mL of titration solvent will cover the electrodes.

NOTE 4—Other beakers of suitable size capacity may be used.

6.7 Titration Stand, suitable to support the beaker, electrodes, stirrer, and buret. An arrangement that allows for the removal of the beaker without disturbing the electrodes, buret, and stirrer is desirable.

NOTE 5—Some apparatus may be sensitive to interference by static electricity, shown by erratic movements of recorder pen or meter indicator, when the titration assembly (beaker and electrodes) is approached by the operator. In this case surround the beaker closely with a cylinder of copper gauze that is electrically grounded.

7. Reagents and Materials

7.1 Purity of Reagents—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

7.2 Purity of Water—Unless otherwise indicated, references to water shall be understood to mean reagent water as defined by Type III of Specification D 1193.

7.3 Acetic Acid, glacial (Warning—Toxic and irritant).

7.4 Acetic Anhydride (Warning—Toxic and irritant).

7.5 Chlorobenzene (Warning—Toxic and irritant).

7.6 Perchloric Acid, Standard Solution in Acetic Acid (0.1 N) (Warning—Powerful oxidant when dry or heated. Great care should be taken to avoid contact with organic matter under conditions that may result in subsequent drying or heating, and spills should be washed immediately and thoroughly with water.)—Mix 8.5 mL of 70 to 72 % perchloric acid (HClO₄, 70 to 72 %) (or 10.2 mL of 60 to 62 % HClO₄ solution) with 500 mL of glacial acetic and 30 mL (or 35 mL if the 60 to 62 % HClO₄ solution is used) of acetic anhydride. Dilute to 1 L with glacial acetic acid. Allow the solution to stand for 24 h.

NOTE 6—Excess acetic anhydride should be avoided to prevent acetylation of any primary or secondary amines that may be present.

7.7 Potassium Hydrogen Phthalate—(KHC₈H₄O₄).

7.8 Sodium Perchlorate Electrolyte—(Warning—Sodium perchlorate is toxic and an irritant. It is also a powerful oxidizing agent when heated. Great care should be taken to avoid contact with organic matter under conditions that may result in subsequent drying or heating, and spills should be washed immediately and thoroughly with water.) Prepare a saturated solution of sodium perchlorate (NaClO₄) in glacial acetic acid. An excess of undissolved NaClO₄ shall always be present at the bottom of the solution.

7.9 Titration Solvent—Add one volume of glacial acetic acid to two volumes of chlorobenzene.

7.10 Sodium Carbonate, anhydrous (Na₂CO₃).

7.11 Sodium Acetate Solution, 0.1 N in acetic acid (for back titration, see Sections 16 and 17)—Dissolve 5.3 g of anhydrous Na₂CO₃ in 300 mL of glacial acetic acid. Dilute to 1 L with acetic acid after solution is complete.

8. Standardization of Reagents

8.1 Perchloric Acid Solution—The standardization of the perchloric acid solution (HClO₄) differs for the two procedures as follows:

8.1.1 Procedure A (120 mL)—Heat a quantity of potassium hydrogen phthalate in an oven at 120°C for 2 h and allow it to cool. Take 0.1 to 0.2 g of the potassium hydrogen phthalate weighed to the nearest 0.1 mg and dissolve it in 40 mL of warm

3 Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Annual Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopoeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.
glacial acetic acid. Add 80 mL of chlorobenzene, cool, and
titrte with 0.1 N HClO₄ solution, using the electrode system
and procedures given in 10.1 to 10.4 and 11.4 to 11.7. Detect
the end point by the same procedure used for base number
determination (see 14.2). Carry out a blank titration on 40 mL
of glacial acetic acid plus 80 mL of chlorobenzene (see 11.8).

8.1.2 Procedure B (60 mL)—Heat a quantity of potassium
hydrogen phthalate in an oven at 120°C for 2 h and allow it to
cool. Take 0.05 to 0.1 g of the potassium hydrogen phthalate
weighed to the nearest 0.1 mg and dissolve it in 20 mL of warm
glacial acetic acid. Add 40 mL of chlorobenzene, cool, and
titrte with 0.1 N HClO₄ solution as described in 8.1.1. Carry
out a blank titration on 20 mL of glacial acetic acid and 40 mL
of chlorobenzene (see 11.8).

8.1.3 Calculate the normality, Nₐ, of the HClO₄ solution as
follows:

\[
N_a = \frac{1000W}{(204.23 - (V - b))}
\]

where:

\(W \) = potassium hydrogen phthalate, g,

\(V \) = HClO₄ solution used, mL, and

\(b \) = volume corresponding to \(V \) for the blank titration,

mL.

Note 7—Because of the relatively large coefficient of volumetric
expansion of organic liquids, the acetous HClO₄ solution should be used
within ±5°C of the temperature at which it was standardized. If used at a
temperature more than 5°C higher, multiply the volume used by the factor
1 + (0.001), and if used at a temperature more than 5°C lower, multiply by
the factor 1 + (0.001), where \(T \) is the difference in degrees Celsius
temperatures between standardization and use and is always positive.

8.2 Sodium Acetate Solution—The standardization of the
sodium acetate solution (Na₂CO₃) differs for the two proce-
dures as follows:

8.2.1 Procedure A (120 mL)—Use 120 mL of titration
solvent and 8.00 mL of 0.1 N HClO₄ solution. Titrte with 0.1 N
sodium acetate solution, using the electrode system and pro-
cedure given in 10.1 to 10.4 and 11.4 to 11.7. Detect the end
point by the same procedure as will be used for base number
determination (see 14.2). Calculate the normality, Nₐ, of the
sodium acetate solution as follows:

\[
N_a = \frac{[(8.00 - b)N_a]G}{W}
\]

where:

\(b \) = volume corresponding to \(V \) for the blank titration,

\(N_a \) = normality of the HClO₄ solution, and

\(G \) = volume of standard sodium acetate used in the
standardization, mL.

8.2.2 Procedure B (60 mL)—Use 60 mL of titration solvent
and 4.00 mL of 0.1 N HClO₄ solution. Titrte as described in
8.2.1. Calculate the normality, Nₐ, of the sodium acetate
solution as follows:

\[
N_a = \frac{[(4.00 - b)N_a]G}{W}
\]

where:

\(b \) = volume corresponding to \(V \) for the blank titration,

\(N_a \) = normality of the HClO₄ solution, and

\(G \) = volume of standard acetic sodium acetate used in the
standardization, mL.

9. Preparation of Sample

9.1 It is essential to ensure that the sample is representative
since any sediment can be acidic or basic or have adsorbed
acidic or basic material from the sample. When necessary,
samples are warmed to aid mixing. Used oils should be
vigorously shaken to ensure homogeneity before sampling.

Note 8—As used oils can change appreciably in storage, samples
should be tested as soon as possible after removal from the lubricating
system and the dates of sampling and testing, if known, should be noted.

10. Preparation of Electrode System

10.1 Preparation of Electrodes—When the calomel elect-
rode is to be changed from aqueous bridge to nonaqueous,
drain out the aqueous solution, wash out all crystals of KCl
with water, then rinse the outer jacket (salt bridge) several
times with NaClO₄ electrolyte solution. Finally fill the outer
jacket with NaClO₄ electrolyte solution up to the filling hole.
When using the sleeve-type electrode, carefully remove the
ground-glass sleeve and thoroughly wipe both ground surfaces.
Replace the sleeve loosely and allow a few drops of electrolyte
to drain through to flush the ground-glass joint and to wet the
ground surfaces thoroughly with electrolyte. Set the sleeve
firmly in place, refill the outer jacket with the NaClO₄
electrolyte solution, and rinse the electrode with chloroben-
zene. When in use, the electrolyte level in the calomel
electrode should be kept above that of the liquid in the titration
beaker to prevent entry of contaminants into the salt bridge.
When not in use, fill the calomel electrode with the NaClO₄
electrolyte solution, leave the bung in the filling orifice, and
immerse both electrodes in distilled water, keeping the level of
the electrolyte above that of the distilled water.

10.2 Testing of Electrodes—Test the meter-electrode com-
bination when first put into use or when new electrodes are
installed and restest at intervals thereafter as follows:

10.2.1 Procedure A—Dip the electrodes into a well-stirred
mixture of 100 mL of glacial acetic acid plus 0.2 g of
KHC₅H₆O₄ and record the reading given by the meter. Rinse
the electrodes with chlorobenzene and immerse in 100 mL of
glacial acetic acid plus 1.5 mL of 0.1 N HClO₄ solution.
The difference between readings is to be at least 0.3 V.

10.2.2 Procedure B—Dip the electrodes into a well-stirred
mixture of 60 mL of glacial acetic acid plus 0.1 g of
KHC₅H₆O₄ and record the reading vein by the meter. Rinse
the electrodes with chlorobenzene and immerse in 50 mL of glacial
acetic acid plus 0.75 mL of 0.1 N HClO₄ solution. The
difference between readings is to be at least 0.3 V.

10.3 Cleaning of Electrodes—Following a titration, first
wash the electrodes with titration solvent to remove any
adhering oily material from the previous titration. Then wash
the electrodes with water to dissolve any NaClO₄ that may
have formed around the sleeve of the calomel electrode and to
restore the aqueous gel layer of the glass electrode. Rinse again
with the titration solvent. Before starting a series of sample
titrations, follow this rinsing procedure, then run one or two
blank titrations on the solvent to condition the electrodes.
Repeat the blank titrations if necessary.

10.4 Maintenance of Electrodes—When there is reason to
believe that the glass electrode has become contaminated, it
can be cleaned by immersion in cold chromic acid (Warning—Corrosive and carcinogenic) or an alternative non-chromium-containing strongly-oxidizing acid cleaning solution for 5 min, followed by thorough water washing. After this cleaning treatment, test the electrode as described in 10.2. The calomel electrode can be cleaned by draining and refilling with fresh NaClO₄ solution. Maintain the electrolyte level in the calomel electrode above that of the liquid in the titration beaker at all times. Do not allow the electrodes to remain immersed in titration solvent for any appreciable period of time between titrations. While the electrodes are not extremely fragile, handle them carefully at all times and particularly avoid scratching the glass electrode.

11. Procedure A (120 mL)

11.1 Calculate the quantity of sample required from its expected base number, BN, as follows:

\[
\text{Approximate weight of sample, } g = 28/\text{expected } BN
\]

Note 9—For the back titration procedure (see 16.2), or when analyzing used oils, it may be necessary to use a smaller sample weight.

11.1.1 Weigh the sample into the titration beaker, applying the limits shown as follows. A maximum of 20 g should be taken for analysis.

<table>
<thead>
<tr>
<th>Sample Weight, g</th>
<th>Precision of Weighing, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 to 20</td>
<td>0.05</td>
</tr>
<tr>
<td>5 to 10</td>
<td>0.02</td>
</tr>
<tr>
<td>1 to 5</td>
<td>0.005</td>
</tr>
<tr>
<td>0.25 to 1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>0.1 to 0.25</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

11.2 Add 120 mL of titration solvent to the sample.

11.3 Place the beaker on the titration stand and stir the solution until the sample is dissolved.

Note 10—If solution of the sample proves difficult, dissolve it in 80 mL of chlorobenzene in the titration beaker, then add 40 mL of glacial acetic acid. Many used oils contain some solid materials that will not dissolve. This is a frequently observed condition.

11.4 Prepare the electrodes as directed in 10.1, 10.2, and 10.3. Position the electrodes in the solution so that they are immersed as far as possible. Continue stirring throughout the determination at a rate sufficient to produce vigorous agitation without spattering and without stirring air into the solution. Adjust the meter so that it reads in the upper part of the millivolt scale; for example, 700 mV. For simple meters without this adjustment, it may be necessary to incorporate a source of potential in series with the electrode. A 1.5-V dry cell and potential divider is suitable.

11.5 Fill the buret with 0.1 N HClO₄ solution and place the buret in position in the titration assembly, taking care that the tip is immersed below the level of the surface of the liquid in the beaker. Record the initial buret and meter (cell potential) readings.

11.6 Titration:

11.6.1 Manual Titration—Add suitable small portions of titrant and, after waiting until a constant potential has been established (Note 11), record the buret and meter readings. At the start of the titration and in any subsequent regions (inflections) where 0.1 mL of titrant consistently produces a total change of more than 0.03 V (corresponding to 0.5 pH scale unit) in the cell potential, add 0.05-mL portions. In the intermediate regions (plateaus) where 0.1 mL increments change the potential by less than 0.03 V, add large portions sufficient to produce a total potential change approximately equal to, but not greater than, 0.03 V. Titrate in this manner until the potential changes less than 0.005 V (corresponding to 0.1 pH scale unit) per 0.1 mL.

Note 11—Consider the cell potential constant when it changes less than 0.005 V/min.

11.6.2 Automatic Recording Titration—Adjust the instrument in accordance with the manufacturer’s instructions and set the titration speed at 1.0 mL/min maximum.

11.7 On completion of the titration, remove the beaker and rinse the electrodes and buret tip with titration solvent, then with water, then again with titration solvent (see 10.3). Store in water when not in use (see 10.1).

11.8 For each set of samples make a blank titration using 120 mL of titration solvent. For a manual titration add 0.1 N HClO₄ solution in 0.05-mL increments, waiting between each addition until a constant cell potential is established. Record meter and buret readings after each increment. Follow the procedure in 11.6.2 for an automatic titration.

12. Procedure B (60 mL)

12.1 Calculate the quantity of sample required from its expected base number as follows:

\[
\text{Approximate weight of sample, } g = 10/\text{expected } BN
\]

Note 12—For the back titration procedure (see 17.2) it may be necessary to use a smaller sample weight.

12.1.1 Weigh the sample into the titration beaker, applying the limits shown as follows. A maximum of 10 g should be taken for analysis.

<table>
<thead>
<tr>
<th>Sample Weight, g</th>
<th>Precision of Weighing, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 to 10</td>
<td>0.02</td>
</tr>
<tr>
<td>1 to 5</td>
<td>0.005</td>
</tr>
<tr>
<td>0.25 to 1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>0.1 to 0.25</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

12.2 Add 60 mL of titration solvent to the sample.

12.3 Place the sample on the titration stand and stir the solution until the sample is dissolved.

Note 13—It is especially important for Procedure B that great care be exercised in obtaining accurate weights particularly for the high base number samples which require small sample weights.

12.2.1 Weigh the sample into the titration beaker, applying the limits shown as follows. A maximum of 10 g should be taken for analysis.

<table>
<thead>
<tr>
<th>Sample Weight, g</th>
<th>Precision of Weighing, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 to 10</td>
<td>0.02</td>
</tr>
<tr>
<td>1 to 5</td>
<td>0.005</td>
</tr>
<tr>
<td>0.25 to 1.0</td>
<td>0.001</td>
</tr>
<tr>
<td>0.1 to 0.25</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

12.4 Prepare the electrodes as directed in 10.1, 10.2, and 10.3. Position the electrodes in the solution so that they are immersed as far as possible. Continue stirring throughout the determination at a rate sufficient to produce vigorous agitation without spattering and without stirring air into the solution. Adjust the meter so that it reads in the upper part of the millivolt scale; for example, 700 mV. For simple meters without this adjustment, it may be necessary to incorporate a
source of potential in series with the electrode. A 1.5-V dry cell and potential divider is suitable.

12.5 Fill the buret with 0.1 N HClO₄ solution and place the buret in position in the titration assembly, taking care that the tip is immersed below the level of the surface of the liquid in the beaker. Record the initial buret and meter (cell potential) readings.

12.6 Titration:

12.6.1 Manual Titration—Add suitable small portions of titrant and after waiting until a constant potential has been established (Note 11), record the buret and meter readings. At the start of the titration and in any subsequent regions (inflections) where 0.1 mL of titrant consistently produces a total change of more than 0.03 V (corresponding to 0.5 pH scale unit) in the cell potential, add 0.05-mL portions. In the intermediate regions (plateaus) where 0.1 mL increments change the potential by less than 0.03 V, add large portions sufficient to produce a total potential change approximately equal to, but not greater than, 0.03 V. Titrate in this manner until the potential changes less than 0.005 V (corresponding to 0.1 pH scale unit) per 0.1 mL.

12.6.2 Automatic Recording Titration—Adjust the instrument in accordance with the manufacturer’s instructions and set the titration speed at 1.0 mL/min maximum. When the result of a test on a QC sample exceeds the control limit, corrective action such as instrument recalibration, may be required. An ample supply of QC sample material shall be available for the intended period of use, and shall be homogeneous and stable under the anticipated storage conditions. If possible, the QC sample shall be representative of samples typically analyzed and the average value and control limits of the QC sample shall be determined prior to monitoring the measurement process. The precision for the QC sample must be compared against that given in the Precision and Bias section of this test method in order to verify that the instrument is functioning correctly.

13. Quality Control Checks

13.1 Confirm the performance of the equipment or the procedure each day it is in use, by analyzing a quality control (QC) sample. It is advisable to analyze additional QC samples as appropriate, such as at the end of a batch of samples or after a fixed number of samples. Analysis of result(s) from these QC samples can be carried out using control chart techniques. When the result of a test on a QC sample exceeds the control limits of the laboratory, corrective action such as instrument recalibration, may be required. An ample supply of QC sample material shall be available for the intended period of use, and shall be homogeneous and stable under the anticipated storage conditions. If possible, the QC sample shall be representative of samples typically analyzed and the average value and control limits of the QC sample shall be determined prior to monitoring the measurement process. The precision for the QC sample must be compared against that given in the Precision and Bias section of this test method in order to verify that the instrument is functioning correctly.

14. Calculation

14.1 For a manual titration, plot the volumes of the acid added against the corresponding meter readings.

14.2 Interpret the end point from the graph obtained from the manual or automatic titration. The end point is the midpoint of the inflection, that point at which the curve changes from concave to convex. A useful but not mandatory guide is that the end point is preceded and followed by a deflection of a least 50 mV/0.1 mL of titrant.

14.3 When there is no inflection point or only a very poor one, proceed to Section 16 or Section 17 on back titration. The inflection obtained during back titration preferably is to meet the criteria described in 14.2.

14.4 Calculate the base number, BN, as follows:

\[
BN, \text{ mg KOH/g} = \frac{(E - F) \cdot N_A \cdot 56.1}{S}
\]

where:

- \(E \) = HClO₄ solution used to titrate the sample to the inflection point on the titration curve, mL
- \(F \) = volume corresponding to \(E \) for blank titration at same potential as sample, mL
- \(N_A \) = normality of HClO₄ solution, and
- \(S \) = sample, g.

15. Report

15.1 Report the result as follows:

\[
\text{Base Number (D 2896—Procedure A or B) = Result}
\]

This report format may not be used when using the alternative solvent described in Appendix X2. Instead, use the format described in X2.4.

16. Back Titration, Procedure A (120 mL)

16.1 Some used oils give no inflection point or only a very poor one with the test method described in Section 11. When this situation is encountered, the following modified test method may be used. In this modified test method, excess standard HClO₄ solution is added to the sample, then the excess HClO₄ solution is back titrated with standard sodium acetate solution.

16.2 Accurately weigh the amount of sample specified in 11.1 into the titration beaker. (See Note 16.)

16.3 Dissolve the sample in 80 mL of chlorobenzene and add 40 mL of acetic acid.

16.4 Use a volumetric buret or pipet to add accurately 8.00 mL of standard 0.1 N HClO₄ solution to the beaker. (The standard HClO₄ solution must be in excess. If necessary, add more than 8.00 mL and correct accordingly (16.7).

16.5 Stir the contents of the beaker for 2 min.

Note 15—Because the base number can vary while the QC sample is in storage, when an out-of-control situation arises, the stability of the QC sample can be a source of the error.

16.6 Titrate the unneutralized HClO₄ solution with standard 0.1 N sodium acetate solution. Carry out the titration in the same manner as described in Section 11. For the back titration, the starting point will be in the range from 0 to 100 mV.

16.7 Instead of weighing out a separate sample and proceeding through 16.6, the back titration procedure can be used on a sample being titrated as in 11.1 to 11.6.2, provided that the sample size did not exceed 5 g (see Note 16). When it is apparent from the forward titration that a satisfactory inflection is not present, note the volume of standard HClO₄ solution used, then proceed with 16.6. The standardization (8.2.1) should be modified to coincide with the volume of standard HClO₄ solution.

16.8 Calculate the base number, BN, as follows:

\[\text{BN, mg KOH/g} = \frac{[(G - H) \cdot N_B \cdot 56.1]}{S} \]

where:

- \(G \) = volume of standard sodium acetate used in the standardization, mL (see 8.2.1 or 8.2.2),
- \(N_B \) = normality of the sodium acetate solution,
- \(H \) = volume of standard sodium acetate used in the sample back titration, mL, and
- \(S \) = weight of sample, g.

17. Back Titration, Procedure B (60 mL)

17.1 Some used oils give no inflection point or only a very poor one with the test method described in Section 12. When this situation is encountered, the following modified test method may be used. In this modified test method, excess standard HClO₄ solution is added to the sample, then the excess HClO₄ solution is back titrated with standard sodium acetate solution.

17.2 Accurately weigh the amount specified in 12.1 into the titration beaker (see Note 17).

Note 17—The sample size for the back titration modification does not exceed 2.5 g. When, with a 2.5-g sample, no inflection point is found, reduce the sample size to 1.5 g and repeat the analysis. Reducing the sample size generally improves the clarity of the inflection point.

17.3 Dissolve the sample in 40 mL chlorobenzene and add 20 mL of acetic acid.

17.4 Use a volumetric buret or pipet to add accurately 4.00 mL of standard 0.1 N HClO₄ solution to the beaker. (The standard HClO₄ solution must be in excess. If necessary, add more than 4.00 mL and correct accordingly (17.7).)

17.5 Stir the contents of the beaker for 2 min.

17.6 Titrate the unneutralized HClO₄ solution with standard 0.1 N sodium acetate solution. Carry out the titration in the same manner as described in Section 12. For the back titration, the starting point will be in the range from 0 to 100 mV.

17.7 Instead of weighing out a separate sample and proceeding through 17.6, the back titration procedure can be used on a sample being titrated as in 12.1 to 12.6.2, provided that the sample size did not exceed 2.5 g (see Note 17). When it is apparent from the forward titration that a satisfactory inflection is not present, note the volume of standard HClO₄ solution used, then proceed with 17.6. The standardization (8.2.2) should be modified to coincide with the volume of standard HClO₄ solution used.

17.8 Calculate the base number as described in 16.8.

18. Report of Result for Back Titration

18.1 Report the result as follows:

\[\text{Base Number by Back Titration} \]

(120 mL = Procedure A or B) = Result

19. Precision and Bias

19.1 Procedure A (120 mL):

19.1.1 The precision of this test method as determined by statistical examination of interlaboratory results is as follows (see Note 14 and Note 16):

19.1.1.1 Repeatability—The difference between two test results, obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>% of Mean</th>
<th>All oils with forward titration</th>
<th>Used oils requiring back titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Note 18—Since there were insufficient data from the 1986 cooperative study to determine the precision for the back titration procedure for used oils, the back titration precision data are those obtained in the 1972 study. A new cooperative study is planned to determine the back titration precision using modern instrumentation.

19.1.1.2 Reproducibility—The difference between two single and independent results obtained by different operators working in different laboratories on identical test material, would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>% of Mean</th>
<th>All oils with forward titration</th>
<th>Used oils requiring back titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Note 19—The ranges of base number values for which these precision values were established are given in Appendix X1.

19.1.2 Bias—This procedure in Test Method D 2896 for measuring base numbers has no bias because the base numbers can be defined only in terms of the test method.

19.2 Procedure B (60 mL):

19.2.1 The precision of this test method as determined by statistical examination of interlaboratory results is as follows (see Note 14 and Note 16):

19.2.1.1 Repeatability—The difference between two test results, obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>% of Mean</th>
<th>All oils with forward titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

19.2.1.2 Reproducibility—The difference between two single and independent results obtained by different operators working in different laboratories on identical test material

5 Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1011 and RR:D02-1237.
would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

<table>
<thead>
<tr>
<th>All oils with forward titration</th>
<th>% of Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

19.2.2 Bias—This procedure in Test Method D 2896 for measuring base numbers has no bias because the base numbers can be defined only in terms of the test method.

APPENDIXES

(Nonmandatory Information)

X1. TEST COVERAGE

X1.1 During the developments of the original test method (Procedure A) and the test method for the reduced titration solvent volume (Procedure B), cooperative testing was done on samples covering a wide range of types of oils, of additive concentrates which are used to prepare these oils, and of services for the oils. Even so, however, it was not possible to cover the complete range of base numbers. It is believed that reasonable interpolation and extrapolation from the ranges used will not introduce serious errors in the precision.

X1.2 The ranges used for the precision were as follows:

- X1.2.1 Fresh Oils—Base numbers from 6 to 70.
- X1.2.2 Additive Concentrates—Base numbers from 5 to 300.
- X1.2.3 Used Oils on Which Were Employed the Forward Titration—Base numbers from 5 to 27.

X2. ALTERNATIVE SOLVENT

X2.1 In order to eliminate the chlorobenzene from this test method, an alternative solvent was developed. Cooperative testing was done on samples covering a wide range of types of oils, both new and used, and of additive concentrates used to prepare these oils. Results have shown that the two solvents provide statistically equivalent results; however, the precision of the alternative solvent is worse than the original. Paragraph X2.5.5 describes how to compare results using the two different solvents.

X2.2 Regents

- X2.2.1 Xylenes, mixed. (Warning—Flammable. Vapor harmful.)
- X2.2.2 Alternative Titration Solvent—Add one volume of glacial acetic acid to two volumes of mixed xylenes.

X2.3 Procedure

X2.3.1 Procedure A of Test Method D 2896 is followed exactly, except that mixed xylenes replace chlorobenzene and the alternative titration solvent replaces the titration solvent.

X2.4 Report

X2.4.1 Report the result as follows:
Base Number (Test Method D 2896–Alternative Solvent, X2) = Result

X2.5 Precision and Bias

X2.5.1 The precision and bias of this alternative solvent test method was determined through a round robin using new and used oils as well as additive concentrates. The base number values covered a range from approximately 0.5 to 400. Statistical analysis of round robin results are available in the research report.6

X2.5.2 Repeatability—The difference between two test results, obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

\[6.2 \% \text{ of the mean} \]

NOTE X2.1—As part of the same round robin, these samples were analyzed using chlorobenzene. The repeatability using chlorobenzene was calculated to be 3.4 % of the mean.

X2.5.3 Reproducibility—The difference between two single and independent results obtained by different operators working in different laboratories on identical test material would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

\[16.2 \% \text{ of the mean} \]

NOTE X2.2—As part of the same round robin, the same samples were analyzed using chlorobenzene. The reproducibility using chlorobenzene was calculated to be 8.7 % of the mean.

X2.5.4 Relative Bias—No systematic bias was detected between the chlorobenzene and mixed xylenes methods.

6 Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR: D02-1345.
X2.5.5 To compare results obtained using different solvents, use the following:

X2.5.5.1 Repeatability—The difference between two test results using the two different solvent systems, obtained by the same operator with the same apparatus under constant operating conditions on identical test material, would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

5.0 % of the mean

X2.5.5.2 Reproducibility—The difference between two single and independent results using the two different solvent systems, obtained by different operators working in different laboratories on identical test material, would, in the long run, in the normal and correct operation of the test method, exceed the following values only in one case in twenty:

13.0 % of the mean

SUMMARY OF CHANGES

Subcommittee D02.06 has identified the location of selected changes to this standard since the last issue (D 2896–01**1) that may impact the use of this standard.

(1) Added type of samples that may be analyzed by this test method in Note 9.